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1 Preliminary Remarks and Summary

In the phenomenological analyses of supersymmetric extensions of the Standard
Model, one has to face a plethora of new parameters. Most of them are related
to the masses of the sfermions – squarks and sleptons. Of course this is also
true in the Standard Model because of the flavour problem: three families of
fermions with hierarchical masses and mixings. It becomes much worse in the
supersymmetric extensions of the Standard Model, since for each fermion one
has two scalars. Only the mass eigenvalues and the relative mixings plus one
phase, in the left-handed sector are observable in the Standard Model. The
situation is more involved in the susy extensions, where there are twice more
eigenvalues and many mixings and phases become observable.

There are many experimental – and phenomenological – constraints on these
parameters, but they are somewhat difficult to analyse without more or less
arbitrary assumptions. Still they provide very strong limits on many of these
parameters. Basically, these bounds come from the fact that the new particles
could excessively contribute to processes that are in good agrement with the
Standard Model or for which there exist experimental limits. How to exploit
this information to understand the origin of this parameters: the supersymmetry
breaking mechanism?

The fermion masses and mixings have motivated many suggestions on the
possible origin of the flavour structure in the Standard Model. Most of them
introduce new – flavour – symmetries. What can these models tell us about
the masses and mixings of sfermions? Are their predictions consitent with the
experimental limits?

These lecture notes present a necessarily limited appraisal of these questions.
Since several other lectures were presented in the same School, some problems
are to be found in the other contributions to these proceedings. These notes
concentrate on the more qualitative side of the various questions related to
the flavour patterns for the squark and slepton masses. They try to remain
simple more than complete. The precise phenomenological analysis and the
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many models for the sfermion masses are available in the references herein and
they are not exhaustively listed below.

Since this is not a review, just lecture notes, the references are only to papers
that were mostly useful in preparing them, hence very subjective. I apologize
to all the authors that were forgotten or not systematically copy-pasted to the
included short bibliography.

These notes are organized as follows. We first discuss the general structure
of the parameters related to the sfermion masses, in particular,

• General form of the mass matrices

• Universality of soft terms

Next we recall the main phenomenological constraints on these parameters,
skipping the important chapter of CP violations discused by Y. Nir [1]. The
main subjects are then,

• Baryon and lepton number and R-parity

• Charge and colour breaking

• Supersymmetric FCNC problems

• Solutions: degeneracy, alignment and decoupling

In order to understand the relation between the soft parameters and the
breaking of supersymmetry, the next section summarizes the relevant aspects of
broken supergravity. The basics of sugra and much more are contained in the
R. Grimm lecture notes [2], we just concentrate on a few points,

• Kähler geometry

• Supersymmetry breaking

• Origin of soft terms

• Soft terms as remnants of hidden susy breaking

The emphasis is on the geometrical aspect of the transmission of supersym-
metry breaking and the influence of new physics into the Kähler potential. The
content and the use of the resulting formulae is applied to a few examples:

• Modular invariant Kähler geometry

• Gauge mediated supersymmetry breaking

• Decoupling of a flavour theory

Finally, some recent ideas related to these problems are illustrated by de-
velopping an example that is not quite realistic but still presents many of the
features that arerelevant in the subject. This is preceeded by an introduction
of some of the ingredients,
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• Froggatt-Nielsen paradigm

• Green-Schwarz mechanism

• Model with anomalous U(1)

The aim of this discussion is to put forward the impact of a flavour theory
on the pattern of scalar sparticles, and, hopefully in the future, the impact of
the pattern of scalar sparticles on a flavour theory .

Many other aspects were discussed in the other lectures and were not in-
cluded here, in particular, problems related to grandunification (R. Barbieri)[3]
and string phenomenology (G. Ross)[4], the most appealing frameworks to face
the flavour problem after all.

2 Flavour Patterns of Scalar Masses

2.1 General form of the mass matrices

Our first task is to identify the possible patterns of the susy breaking parameters.
In the extensions of the Standard Model with the minimum field content and
R-parity, or MSSM, these are the only new parameters since the gauge and
Yukawa couplings are known, and they are all related to the masses of the susy
particles: gaugino masses and scalar masses. Therefore they control essentially
all the expected effects that could supply any evidence for susy in Nature. In
these notes we shall concentrate on the scalar masses and mention gaugino
masses only when they become relevant in the discussion.

The plethora of new parameters in the scalar mass sector is mostly due to
our ignorance about the origin of flavour. One is forced to allow for the most
general structure, only constrained by the experimental and phenomenological
limits. Besides the two doublets of Higgs scalars denoted H1 and H2, the MSSM
scalar matter has 15 matter complex scalars, one for each fermion in the SM,
which we denote:

Qi
L =

(
U i

L

Di
L

)
UCi

L = U i∗
R DCi

L = Di∗
R Li

L =

(
N i

L

Ei
L

)
ECi

L = Ei∗
R (1)

where i = 1, 2, 3, is a family index. The scalars associated to the left-handed
quarks and leptons are grouped in doublets by the electroweak symmetry.

Consider the MSSM superpotential,

WMSSM = hU
ijQ

iH2U
cj + hD

ijQ
iH1D

cj + hE
ijL

iH1E
cj + µH1H2, (2)

The resulting (globally) supersymmetric scalar potential is

Vsusy =
∑∣∣∣∣

∂W

∂zi

∣∣∣∣
2

+
1

2

∑
(Dα)

2
(3)
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where zi = H1,H2, U,D,Q,L,E, D
α = z̄ ı̄(Tαz)i, and Tα are the corresponding

representation of SU(3) ⊗ SU(2) ⊗ U(1). The soft part, i.e., the susy breaking
terms of the scalar potential are (flavour indices omitted):

Vsoft =
∑

m2
i |zi|2 +AUh

UQH2U
c +ADh

DQH1D
c

+ AEh
ELH1E

c +BµH1H2 (4)

The general mass matrices for these scalars (assuming R-parity) are of the
form:

(
U†

L U†
R

)




m̃2
UL

m̃2
LR

m̃2†
LR m̃2

UR







UL

UR




(5)

where m̃2
UL
, m̃2

UR
, m̃2

LR are three by three matrices in family space. There are
analogous mass matrices for the D-squarks, the E-sleptons and the sneutrinos
N. Taking into account the electroweak symmetry breaking by the Higgs vev’s,
which give masses to the quarks and leptons, one obtains the usual expressions:

m̃2
UL

= m̃2
Q +m†

umu m̃2
UR

= m̃2
U +mum

†
u

m̃2
DL

= m̃2
Q +m†

dmd m̃2
DR

= m̃2
D +mdm

†
d

m̃2
EL

= m̃2
L +m†

eme m̃2
ER

= m̃2
E +mem

†
e

m̃2
NL

= m̃2
L +m†

νmν (6)

where mu, md, me and mν are the fermion mass matrices, in a general basis
in the family space.

It is usual and useful to define the matrix elements that connect L and R
scalars in (5 in terms of the AU , AD, AE matrices (in flavour space) by:

m̃2
U,LR = (AU + µ cotβ)mU

m̃2
D,LR = (AD + µ tanβ)mD

m̃2
E,LR = (AD + µ tanβ)mE (7)

which separates the contributions (A matrices) from susy breaking and the
supersymmetric term proportional to the µ parameter, with tanβ = 〈H2〉/〈H1〉.
This definititon of the A matrices is general but not necessarily the most natural
as it will become apparent from the their relation to susy breaking discussed
below.

Let us now count the number of parameters in these soft terms. There are
five hermitian matrices m̃2

Φ, Φ = Q, U, D, L, E,, and 3 complex matrices,
AU , AD, AE , hence 99 parameters altogether (100 if one counts the supersym-
metric Higgs mass µ)! In the absence of further constraints, they are all of the
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order of the susy breaking scale as felt by the matter scalars, denoted by msusy.
Notice that the A parameters appear multiplied by the fermion masses, so that
their physical relevance is diminished, but for those multiplying masses of the
third family and, specially, mtop.

In order to define these parameters in an unambiguous way, we choose to
work in the basis of the family space where mu and me are diagonal, unless
otherwise specified. This is the basis of the physical up-quarks and charged
leptons, which turns out to be convenient. The left-handed down-quarks differ
from the physical states by a CKM transformation. This gives a definition of 99
parameters unconstrained by the SM symmetries, that we now turn to analyse.

Of course, there would be a tremendous simplification of the flavour depen-
dence if one could find a reason to impose that the sfermion mass matrices
(5,6,7) and the corresponding fermion mass matrices are diagonal in the same
basis. One of the main scopes of these lectures will be to emphasize that this is
a difficult task since the origins of the two kinds of mass matrices are completely
different: one is due to susy breaking and the other one is due to the electroweak
symmetry breaking.

Up to now we have diagonalized the fermion masses, or the Yukawa cou-
plings, by unitary transformations of the chiral multiplets and so defined the
CKM matrix. If now we define the physical squarks by the eigenvectors of (5),
the supersymmetry transformations on physical states will connect states with
different flavours. E.g., for the physical down-quarks and the corresponding
squarks, one would have for the action of the susy charge Q1/2 :

Q1/2




d
s
b


 =




∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗






d̃
s̃

b̃


 =⇒ flavoured susy

Susy is not flavour diagonal anymore and relates physical states from different
families.

This has an important consequence for the couplings of the susy particles,
which in a supersymmetric theory are related to the Yukawa and gauge couplings
of the SM. For instance, conservation of colour and e.m. symmetries ensure
that the gluon and photon couplings in the lagrangian are flavour diagonal in
the physical states. Supersymmetry transmits this property to the gluino and
photino couplings. After susy breaking, the action of supersymmetry is no
more flavour diagonal, so that the gluino and photino will couple fermions from
sfermion of different families and produce flavour mixing. These effects will be
proportional to the misalignment between fermion and sfermion masses, namely,
to the commutators:

[
m̃2

Q,m
†
umu

]
6= 0

[
m̃2

Q,m
†
dmd

]
6= 0

[
m̃2

U ,mum
†
u

]
6= 0

[
m̃2

D,mdm
†
d

]
6= 0

[
m̃2

L,m
†
eme

]
6= 0

[
m̃2

E ,mem
†
e

]
6= 0

[
A†

UAU ,mum
†
u

]
6= 0

[
A†

DAD,mum
†
u

]
6= 0

[
A†

EAE ,mum
†
u

]
6= 0 (8)

5



Actually, radiative corrections to the scalar matrices are important in the
MSSM and are nicely related to the electroweak symmetry breaking [5] : the
large Yukawa coupling of the t quarks to H2 Higgs is instrumental, together with
the fact that the H2 (mass)2 is more renormalized by the radiative corrections
than the others. It is then naturally negative at a scale that has to be close
to 174GeV, where 〈H2〈6= 0, while the stop (mass)2 are still positive to prevent
colour and charge symmetry breaking. The radiative corrections due to the
highly hierarchical Yukawa couplings will introduce further flavour dependence
on the sfermion mass matrices. Instead, radiative corrections due to gauge cou-
plings are family independant, adding a term proportional to the unity matrix
to (5) and reducing the family dependence.

A final remark on the important issue of CP violation. The phases of the
matter supermultiplets have been redefined so that the fermion masses are real.
The phases of the complex sfermions are therefore fixed or, if the parameters
in (6, 7) are made real, the phases will be retrieved in the couplings of the
sfermions, just like for fermion mixing. These are therefore new sources of CP
violation which have to be carefully confronted to experiments [1].

2.2 Universality of soft terms

Of course, the number of soft masses can be drastically reduced if one assumes [6]

that all the parameters of the same nature, m̃2 or A, are identical,

m̃2
Φ = m2

01 , (∀Φ)

AΦ = A01 , (∀Φ) (9)

Mostly often, this assumptions are accompanied by that of gaugino univer-
sality, namely, that the gaugino masses are all equal,

mg̃ = mW̃ = mB̃ = M1/2 (10)

Of course this universality is not, by far, a symmetry of the supersymmetric
theory. It is badly broken by both the gauge interactions – since fermions in
each family have different gauge quantum numbers – and the Yukawa couplings
which are hierarchical and carry the information on family mixing. Therefore
universality will receive quantum corrections. If the conditions (9) are imposed
at some appropriate high scale, then they will be violated by radiative correc-
tions whose main effect will be the running down to the low scale where susy is
broken and the SM obtained.

As already stressed the gauge interactions just add a different term pro-
portional to the unity matrix to each one of the m̃2

Φ and AΦ, proportional to
the gaugino (mass)2, hence to M2

1/2, and they do not affect the family inde-
pendence. The radiative corrections from Yukawa couplings introduce a family
dependence instead. For instance, if one assumes (9,10) at a high scale Λ (the
grandunification sclae or MPlanck being natural choices) and solve the one-loop
RGE [7] in the case Yt � Yb (hence Yc � Yλ one obtains at hte scale of O(MZ)
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(the generated non-diagonal entries are negligible in the basis above-defined),

(
m̃2

Q

)
11

−
(
m̃2

Q

)
33

≈ (Yt/Ycrit)
2

(
1

2
m2

0 +M2
1/2

)

(
m̃2

Q

)
11

−
(
m̃2

Q

)
22

≈ (Yc/Ycrit)
2

(
1

2
m2

0 +M2
1/2

)
(11)

where Λ has been taken at the grandunification scale, and where Ycrit is the
value of Yt(mt) such that Yt → ∞ at the scale Λ (Landau pole). For Λ ≈
MPlanck, Ycrit ≈ 1.1. The coefficients have been roughly approximated. In order
to estimate the effect of this renormalization on the misalignement defined by
(8) with respect to md, the down-quark mass matrix, let us multiply (11) by
the appropriate matrix element of the CKM matrix:

(
m̃2

Q

)
11

−
(
m̃2

Q

)
22(

m̃2
Q

)

11
+
(
m̃2

Q

)

22

× θ12 ≈ 3.10−6 ×
m2

0 + 2M2
1/2

m2
0 + 7M1/2

(
m̃2

Q

)
11

−
(
m̃2

Q

)
33(

m̃2
Q

)

11
+
(
m̃2

Q

)

33

× θ13 ≈ 2.10−3 ×
m2

0 + 2M2
1/2

m2
0 + 7M2

1/2

(12)

If the scale Λ is taken at a much lower scale, as in gauge mediated models,
the reduction of these quantities is roughly proportional to Y −2

crit , which becomes
larger for low Λ. Therefore the effects of family dependence remain small or
moderate even if universality is assumed at large Λ. In this sense the universality
assumption is quite consistent with the approximate conservation of flavour in
∆Q = 0 transitions. Of course one has to relate this property to the susy
breaking mechanism. This will be discussed below.

3 Phenomenological Constraints

There are several phenomenological problems that are related to the flavour
structure – including the related CP violation due to phases in the mass pa-
rameters. Many of them are related to rare processes that could be dangerously
enhanced from the radiative corrections due to sparticles in quantum loops. In
order to comply with all the constraints so obtained one has to restrict the al-
lowed range for the parameters, specially for the soft terms. Let us briefly recall
the main questions to be investigated.

3.1 Baryon and Lepton numbers

Problems:
In the SM, the conservation of B and L is said to be “accidental” as far as
it is a consequence of the gauge symmetries and of the field content of the
SM and its renormalizability. The introduction of the matter scalars allow for

7



more interactions that violate B and L and are invariant under the SM gauge
symmetries. Basically, this can be understood from two facts:

(i) One of the Higgs doublets (H1) that couples to down-quarks and to leptons,
has the same quantum numbers as the three supermultiplets Li that contain
the left-handed lepton doublets except for L. Therefore H1 and Li are alowed
to have exactly the same interactions and the following gauge invariant terms :

LiLjEk, LiDjQk, µiL
iH2 =⇒ L − vioitg, (13)

all vioitg L, are allowed in the superpotential.

(ii) The antisymmetric cubic QCD invariant allows for some Yukawa couplings
of two quarks to a squark, which corresponds to terms of the form

UkDiDj =⇒ B − vioitg (14)

in the superpotential, which violates B. Notice that in the presence of these
couplings the scalar behave as the so-called leptoquarks, leading to the same
kind of exotic physics. These are the so-called R-vioitg couplings.

There is a very strong limits on some of those couplings if they are all
present in some combinations. The most important one, comes from proton
decay. It goes without saying that the resulting bounds are very small numbers.
Of course this can be avoided by imposing B, so relaxing the limits on the L
vioitg couplings. But the latter mix the neutral higgsino, the H0

1 partner, to the
neutrinos, giving a mass to one of them at a level which is already cosmologically
forbidden. There are also many other limits from rare and exotic processes and
precision tests [8]. Some couplings are less restricted than the others.

There are two consequences if the couplings (13) and/or (14) are allowed at
the levels allowed by the phenomenological limits, since there is no stable super-
symmetric particle (LSP) anymore: there would be no natural susy candidate
for the dark matter and susy events at colliders would miss their characteristic
missing energy signature.

Possible Solutions:

(A) There have been attempts to solve this problem by extending flavour models
for the quark and lepton masses to derive a pattern for the couplings (13) and
(14) consistent with the phenomenological limits, including the neutrino masses
and proton decay [9]. In spite of this existence proof, these models are not very
appealling. Also, we all like the susy dark matter candidate, don’t we?

(B) There is a very elegant solution to banish all the B and L vioitg couplings
(13) and (14) from the superpotential by assuming a discrete symmetry, the
R-parity, which is +1 for the SM particles and -1 for their susy partners. In this
way one recovers the B and L conservation (in the effective renormalizable low
energy theory at least). This is the option chosen in the MSSM and we shall
assume the R-parity from here on.

3.2 Charge and Colour Breaking

Problems:
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Vacuum stability bounds are a particularly important issue for supersymmetric
models because of the large number of scalars, any of which can get a vac-
uum expectation value, possibly breaking charge and/or colour. Insisting on
the physical vacuum being stable results in a set of constraints on the possible
supersymmetry breaking parameters which are generally known as Charge and
Colour Breaking (CCB) bounds [10]. There are different schools of thought
regarding the precise cosmological meaning of these bounds. As the vacuum
choice depends on unknown details of our cosmological history, e.g., the reheat-
ing temperature, CCB minima should ultimately be regarded as a constraint on
early cosmology rather than particle physics. Henceforth we take the view that
areas of parameter space which have CCB minima are simply less likely because
their cosmology is severely restricted.

Consider the MSSM potential in (2, 3, 4). Notice that Vsusy is quartic in
the scalar fields, while Vsoft is trilinear. Then, Vsusy dominates for large values
of the fields, zi � msusy, the characteristic scale of the mi and A in (4).

The CCB minima approximately occur along directions in the scalar field
space where the terms in the scalar potential with gauge couplings vanish,
namely, where 〈Dα〉 = 0,∀α (D-flat directions). These directions are in a one-
to-one correspondence with the solutions of the equation [11]

∂I(z)

∂zi
= Cz̄i (15)

where I(z) is any analytic polynomial invariant under the gauge group, and
C is a complex number (when the metrics take a general Kähler form to be
discussed, z̄i is replaced by Ki. Since I(z) is an analytic invariant, 〈Dα〉 = 0 at
any solution of (15).

The MSSM superpotential (2) is a gauge invariant, so that we can choose
I = QH2U

c, which satisfies (15) along the direction Q = H2 = U c(indices
omitted). This is the D-flat direction. It is easily checked that, if mQ ≈ mU ≈
mH2

and hU � 1, the scalar potential, Vsusy + Vsoft, has a minmum close to
this direction, with Q ≈ AU/hU if mQ ≈ mU ≈ mH2

and hU � 1(this excludes
the third family), unless:

|AU |2 < 3(m2
Q +m2

U +m2
H2

) (16)

where the parameters are to be calculated at a scale λ ∼ Q ≈ AU/hU . which is
relatively large for hU � 1. Since m2

H2
is decreasing with the scale, to produce

the radiative breaking of the electroweak symmetry, (16) could be violated at
this scale even when it is not at higher ones.

Therefore one obtains a condition analogous to (16) for the A parameters
associated to each of the cubic terms in (4). This yields a reduced allowed region
in the parameter space of the MSSM, hence a constraint on the susy breaking
mechanism. The actual condition has to be investigated numerically since, as
already mentioned, (16) is only approximate.

However, the most severe conditions come from directions that are both
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D-flat and F-flat,, namely that satisfy (15) for some invariant I(z) and:

∂W

∂zi
= 0 (17)

Along these directions Vsusy = 0. They have been called UFB (acronym of a
meaningless denomination which is needless recalling). The invariant in (15) is
better taken different from those in (2), so that (17) is possible. Actually, the
UFB are associated to gauge invariants that are excluded from the superpo-
tential, a privilege which is granted by susy. This is precisely the case for the
invariants (13) and (14) which have been forbidden by our assumed R-parity.

Consider the invariant,

I = L(QD + µ′H2) (18)

Then, imposing (15) and (17) one fixes µ′ and obtains a direction which is D-flat
and F-flat,

H2 = −a2µ/hD

Q = D = aµ/hD

L = a
√

1 + a2µ/hD (19)

Along this direction, the potential is controlled by the (mass)2 terms in Vsoft

and could develop a relevant local minimum at some scale due to the running
of the parameters. The absence of this minimum requires some inequalities
for the soft parameters in the running (mass)2. For instance, in the MSSM
with universality (9) and (10), one gets a condition m2

0 > O(1)M2
1/2. The UFB

conditions were also investigated for more general classes of models.

Possible Solutions:

(A) The CCB conditons of the type (16) and the UFB conditons on the pa-
rameters are inequalities that are not necessarily unnnatural and can be used
as restrictions on the parameter space that are sufficient to free the model of
possible cosmological constraints.

(B) These constraints can be completely relaxed by adding the R-parity cou-
plings (13) with couplings which are below their upper limits just discussed –
though not very far – while (14) are not needed so that there is no problem with
proton decay. In a sense, the filling in of the UFB vaccua is a fair justification
for R-parity explicit violation!

3.3 Supersymmetric FCNC problems

Problems:
The GIM mechanism explains why flavour is almost conserved in transitions
with ∆Qem = 0, and the SM predictions for these rare transitions agree with
measurements within the experimental and theoretical uncertainties. There-
fore FCNC has always been a major obstacle to theories that introduce flavour
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changing interactions. Examples are the multi-Higgs models or generic R-parity
vioitg couplings. In the MSSM, the interactions are supersymmetric extensions
of the SM ones but, as already stressed, the misalignment between sfermion and
fermion mass matrices, due to (8), introduce family mixing in the couplings of
gauginos and Higgsinos, spoiling the GIM mechanism for gauge couplings and
the Glashow-Weinberg mechanism for Higgs couplings.

Let us consider for instance, the mass mixing in the K0 − K̄0 system, a
monument of particle physics. In the SM it is due to the CKM mixing in the
couplings of the W± that are exchanged twice in the box diagram, resulting in
a s −→ d transition, but with a GIM suppression, a factor m2

c sin θC/M
2
W in the

case of two families.
In the MSSM, one can consider analogous diagrams with both neutral and

charged gauginos (higgsinos are less important for the first two families) and
the appropriate squarks (or sleptons) as the virtual states propagating in the
loop diagrams. Let us consider the box with gluinos and squarks. Since the
external quarks are s and d, we choose to work in a family basis where md is
diagonal.The m̃2

Q, m̃
2
D, AD matrices in the down-squark mass matrix are not

diagonal in this basis. The diagonalization introduces a unitary matrix in the
gluino couplings, actually a 6x6 matrix since the L and R scalars mix, though
the L−R mixing is small as already explained. The necessarily large suppression
factor will require for a strict relation among the mixings and the differences
between mass eigenvalues. Actually, it is much easier to rephrase the issue in
terms of the so-called insertion approximation, where the squark propagators,
as well as the gaugino-higgsino propagators in the relevant case, are developped
around the basis where quark masses are diagonal. Since the effects must be
suppressed, the approximation is good (as far as one does not neglect possible
differences in the diagonal entries of the mass matrices!). This is a development
in the off-diagonal entries (m̃2

Q)ij , etc . . . It is then is usual to define:

(δD
L )ij =

2(m̃2
Q)ij

((m̃2
Q)ii + (m̃2

Q)jj)

(δD
R )ij =

2(m̃2
D)ij

((m̃2
D)ii + (m̃2

D)jj)

(δD
LR)ij =

2(ADmd)ij

((m̃2
D)ii + (m̃2

D)jj)
(20)

and analogous parameters for the U and E sectors. The comparison with the
experimental data on the neutral K0 − K̄0, D0 − D̄0, B0

d − B̄0
d systems give

bounds on the δ’s such that the strongest are on the combinations [12]:

√
(δD

L )12(δD
R )12 < 2.10−3

(msquark

500GeV

)
,

√
(δD

L )13(δD
R )13 < 2.10−2

(msquark

500GeV

)
,

√
(δD

L )23(δD
R )23 < 2.10−2

(msquark

500GeV

)
. (21)
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while the limits on δD
LR are less interesting if one takes into account the quark

mass factor. These are limits on the real part of the parameters. The limits
on the imaginary parts are much more constrained because they produce CP
violation. In the absence of a theory for the CP phases in the MSSM one could
take allow for large phases, at least in the flavour changing sector, and then
further reduce the bounds like (21). For instance, the first bound in (21) should
be reduced by an order of magnitude to accomodate for a large phase.

These limits have been obtained by defining (20) in the basis where md is
diagonal. To keep the same definition when up-quarks are involved, or more gen-
erally, to avoid particularizing one basis, one has also to consider the quantities
like

(
m̃2

Q

)
ii
−
(
m̃2

Q

)
jj(

m̃2
Q

)

ii
+
(
m̃2

Q

)

jj

× θij (22)

where the mass splitting between scalars is multiplied by the appropriate CKM
matrix element. Indeed, to reduce FCNC in both the up and down quark sector
would require a good alignment of m̃2

Q to both md and mu.
The limits in (21) are small numbers. According to the naturalness principle

as formulated by t’Hooft, namely, that small numbers are natural only if the
symmetry increases when they vanish. They must be protected by a symmetry,
and generated through symmetry breaking. Therefore one of the main chal-
lenges in supersymmetric particle physics is to understand the limits like (21)
on supersymmetric FCNC effects from a theoretical viewpoint.

Possible Solutions:

(A) Degeneracy – The easiest to way to make the commutators in (8) to vanish
is to assume that the scalar masses are degenerate, i.e., family independent
at some scale. As already noticed, the corrections due the Yukawa coupling
asymetry in the RGE running is consistent with the observed FCNC effects.
This is obvious if one compares (12) and (21). The scalar masses would have an
U(3) symmetry that would contrast with the hierarchy in the quark masses. In
principle this is possible if the susy breaking is family blind. In models based
on global susy –at least those which are known – it is not possible to give large
masses to all the scalars while keeping the fermions light by a direct coupling
to the goldstino direction, the direction of susy breaking. Therefore one has to
introduce a hidden sector which is coupled through quantum loops to the MSSM
sector. In the so-called gauge mediated models [13] this is achieved through the
gauge sector. Since gauge couplings are family independant, the resulting scalar
masses will inherit this property, and FCNC are not a problem in these models.

A particular case is the universal one in which all the scalars in the theory are
degenerate at some scale, presumably ΛGUT or MPlanck. This would correspond
to susy breaking along a direction which is coupled universally to the chiral
multiplets, at least those of the MSSM. In principle this is possible in gravity
mediated models [14], that will be discussed in more detail below. The dilaton, a
necessary element in string theories, is an example of this property. We shall also
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see later how the flavour dependence of the theory could bias the universality.
Finally, one could assume partial degeneracy, for instance, between the first

two families of squarks to avoid large contributions to the K0 − K̄0 system.
It is motivated by the approach to the fermion mass hierachy problem where
the relative lightness of the first two families is explained by a SU(2) symmetry
(or equivalent) which is broken in a second step. The main susy breaking is
SU(2) invariant, the corrections only appearing at the second step. Actually,
the degeneracy solution to FCNC suppression points towards a non-abelian
horizontal family symmetry. It is less clear whether this is also what is suggested
by the fermion flavour puzzle [4].

(B) Alignment – Even if the scalar mass eigenstates are not degenerate, the
commutators in (8) could vanish or be small enough to suppress the FCNC
effects. Phenomenologically one assumes that all commutators in (8) are very
small, but, for since the up- and down-quarks themselves are not aligned,

[
m̃2

Q,m
†
dmd

]
≈ 0

[
m̃2

Q, V
†m†

umuV
]
≈ 0 (23)

where V is the CKM matrix. This suppresses the FCNC in the K0−K̄0 system,
but if the squarks are not degenerate one expects effects proportional to (22) in
the D0 − D̄0 system since the squarks are not aligned to the up-quarks. This
contrasts with the more radical suppression of FCNC effects in the previous
solution.

Models possessing alignment at least in the sector of the two first families
have been discussed in the literature. They should be viewed more as an exis-
tence proof than as an attractive solution to the FCNC problem. Typically they
postulate two or more flavour symmetries and some pattern in their breaking
while the quantum numbers are ajusted so that the needed alignment follows
together with fermion mass hierarchy [15].

(C) Decoupling – The most current solution to FCNC problems in models
beyond the SM is to decouple the effects by pushing the scales of the model
high enough. Could one put a lower limit on the susy scale by following this
conservative school of thought? Of course one cannot increase the masses of
all the MSSM scalars and gauginos. The sector which is responsible for the
electroweak symmetry breaking has to remain at a scale consistent with the
value of mZ or else some fine tuning would be required. This includes of course
the Higgs parameters, mH1,2

, Bµ, µ, as well as the masses in the top sector, and
the gaugino masses, specially the gluino one. The usual, more or less compelling
naturalness arguments lead to a limit of O(1 TeV) for this sector. Since the
main aim is to avoid effects where the first two families are more relevant, it
has been suggested to assume that the first two generation sfermions are much
heavier than those belonging to the third family [16]. Indeed, the limits in
(21) reflect the decoupling for large squark masses, which effectively cut off the
loop integrals, though it is a bit less efficient as the gauginos remain lighter.
Roughly, one can also conclude from (21) that the squark masses have to be
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quite large, raising the question: how large can they be without disturbing the
electroweak symmetry breaking? The first two families contribute to the running
of the parameter m2

H2
at two loops but if the masses are large they compensate

the additional gauge coupling factor. Applying the same naturalness principle
as above suggests that these masses cannot exceed 5 or 10 TeV. This is not
sufficient by itself for the FCNC supprssion, but can be combined with the
other mechanisms above to accomplish it.

At the end of these lectures I shall discuss models that try to combine all
these ingredients in a cocktail that could reduce some FCNC effects without
killing them all.

3.4 Supersymmetric CP violations

(N.B. – Since this subject is fully presented in the lectures by Y. Nir, it is not
included in these notes.)

4 Susy Geometry and Soft Terms

The phenomenological constraints on the flavour pattern of soft terms are partic-
ularly strong. They have to be fulfilled in terms of the susy breaking mechanism
and its transmission to the MSSM sector. Let us first review in some detail the
formalism of broken local supersymmetry within a quite general approach since
we do not have any compelling susy breaking model.

4.1 Kähler geometry

The kinetic terms of N = 1 supersymmetric theories are defined from the Kähler
geommetry of the complex manifold of the scalar fields zAin the chiral super-
multiplets ΦA with components (zA, ψA, FA). The Kähler metrics is defined
from the Kähler potential K(zA, z̄Ā) as:

∂A∂ĀK = KAĀ

(
zB, z̄B̄

)
(24)

Of course one can also define K((ΦA, Φ̄Ā) in terms of the superfields. The
kinetic terms in the supersymmetric lagrangian is:

Lkin = KAĀ

(
∂µz

A∂µz̄Ā + iψ̄Ā∂/ψA + FAF Ā
)

(25)

with a σ−model structure of the Kähler type. Indeed, the Kähler potential
K((zA, z̄Ā) is defined by the symmetries of the manifold, including the gauge
symmetries. The natural scale of the manifold is the sugra scale, MPlanck, at
the classical level, so that we choose it as the scale unit. Quantum corrections
produce Kähler deformations and introduce new scales, such as the perturba-
tive scale dependence and thresholds. Hence the metrics (24) is field dependent
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(σ−model) and scale dependent. It is related to the wave-function renormaliza-
tion so that the chiral supermultiplets get renormalized at a given scale by the
vielbeins:

KAĀ = ζa
Aζ̄

a
Ā (26)

(we shall avoid the ambiguous notation “ζ = K1/2”. The metric is invariant
under the Kähler transformations,

K(zA, z̄Ā) → K(zA, z̄Ā) + g(zA) + ḡ(z̄Ā) (27)

where g is analytic. Correspondingly, an analytic function transforms as (indices
omitted for simplicity):

f(z) → e−g(z)f(z)

eK/2f(z) → e−iImg(z)eK/2f(z) (28)

One defines the covariant derivative by:

∇A = ∂A +KA − ΓC
AB (29)

→ e−g(z)∇Ae
g(z)

∇Af(z) → e−g(z)∇Af(z)

with the connexion,

ΓC
AB = KD̄C∂AKBD̄ (30)

and an additional term KA related to the Kähler transformations.
The Riemann curvature tensor is

RAB̄CD̄ = ∂A∂B̄KCD̄ − ΓF
ACKFĒΓĒ

B̄D̄

= ∂A∂B̄KCD̄ −KĒF∂AKCĒ∂B̄KFD̄ (31)

In some special situations the metrics can be approximately diagonal for some
set of fields

KBC̄ = δC
BZB

(
zA, z̄Ā

)
(32)

in which case one gets,

ΓC
AB = ∂A (lnZB) δC

B

RAB̄CD̄ = δD
C ZC∂A∂B̄ (lnZC) (33)

4.2 Superpotential

The superpotential is a chiral supermultiplet W (ΦA) which is a function of
the chiral fields ΦA and, by extension, a holomorphic function W (zA) of the
complex scalars zA. It is invariant under the gauge and flavour symmetries,
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δW = ∂ W/∂ ΦAδΦ
A = 0 (but has R−charge=2, when defined). The superpo-

tential is protected by its holomorphy against perturbative quantum corrections.
The parameters in the superpotential – Yukawa couplings and supersymmetric
masses – are only renormalized by the wave-function renormalization, namely
by the quantum deformations of the Kähler metric.

In the presence of supersymmetry breaking, the gravitino mass is given by
the vev of the following expression,

m3/2 = eK/2W (zA), (34)

which changes by a phase under Kähler tranformations.

4.3 Auxiliary fields

The auxiliary fields FA andDα carry the supersymmetry breaking effects. After
the use of the field equations they take the expressions (we only display the
bosonic dependence here, which is the one relevant in the following):

FA = eK/2∇AW (z) = KAB̄F̄
B̄ (35)

for the auxiliary field of the chiral multiplet ΦA, which gets a phase under the
Kähler transformations, and

Dα = igαKA

(
δαz

A
)

(36)

for the auxiliary field in the vector multiplet, which depends on the action of
the gauge symmetry on the chiral multiplets. These usually transform in linear
representations,

δαΦA = −i(Tα)A
BΦB (37)

The invariance of Dα under a Kähler transformation follows from the invariance
of the analytic function g(z) under the (complexified) gauge invariance,

δg(z) = ∂Aδz
A = 0 (38)

For the so- called canonical metric, K = δAB̄ z̄
B̄zA, so that KA = δAB̄ z̄

B̄ in
(36). In this case, with (37) one obtains the usual expression,

Dα = gαz̄Ā(Tα)A
Bz

B (39)

The auxiliary fields FA couple to the generalized Yukawa couplings and
supersymmetric mass terms in the superpotential as shown in (35). Notice that
they are holomorphic only in the limit MPlanck → ∞ when all the gravitational
couplings are neglected. In the simple case of a canonical metric,

FA = eK/2 ∂W

∂zA
+m3/2z̄Ā (40)
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4.4 Scalar potential and susy breaking

After the auxiliary fields are replaced by their expressions in (35) and (36), the
scalar potential of a locally supersymmetric theory takes the form:

V = FAFA − 3|eK/2W |2 +
1

2
DαDα (41)

The negative term, coming from the elimination of a sugra auxiliary field, is
−3m2

3/2 according to (34).
Supersymmetry breaking occurs when some of the auxiliary fields get vev’s:

〈FA〉 6= 0 and/or 〈Dα〉 6= 0. They give a positive contribution to the minimum
of the scalar potential. In the limit global susy, namely, when MPlanck → ∞ and
m3/2 → 0, these are the only contribution to the cosmological constant Λcosm.
But in the context of sugra, they can be cancelled by the negative term in (41)
in a theory with susy breaking and vanishing Λcosm. Of course, this is a major
property of sugra theories, even if we are not yet able to give a satisfactory
solution to the Λcosm puzzle. From now on we shall assume Λcosm = 0 so that
〈V 〉 = 0. Then,

m 3

2

=
1

MPL

〈
FAFA + 1

2D
αDα

〉1/2

√
3

=

∣∣〈eK/2W
〉∣∣

M2
PL

(42)

This expression for the gravitino mass is just the counterpart of the mass =
coupling× v.e.v. of the gauge particle associated to the broken local symmetry,
which is the gravitino for local susy or sugra. Indeed, the gravitino mass is
proportional to the overall amount of susy breaking which couples only through
the sugra coupling, M−1

Planck, to the gravitino. As we shall discuss later, the
scalars also have a gravitational coupling to the 〈FA〉 that leads to scalar masses
ofO(m 3

2

). But the coupling through the goldstino, the helicity 1/2 component of
the gravitino, can be larger in principle. In this case, the gravitational coupling
of susy breaking could be negligible as well as all typical sugra terms, and the
theory would possess aproximate global susy.

Therefore one has to distinguish two cases of low energy effective theoris
with broken local susy (remember that susy must be a local symmetry as it
encompasses the local Poincaré invariance of gravitation):

(i)those where susy breaking effects are of O(m 3

2

), and susy breaking cou-

ples mostly through sugra (gravity mediation), formally obtained in the limit
MPlanck → ∞ with m3/2 fixed [14] ;

(ii)those where low energy susy breaking effects are much larger than m 3

2

, ob-
tained in the limit MPlanck → ∞ with m 3

2

→ 0, which can be discussed as
approximated global susy theories; in this case the coupling to the matter su-
permultiplets that yield their scalar masses have to be quantum effects and it
has been known since the beginning of supersymmetric particle physics that the
best candidate is what is called gauge mediation [13] (more on that later).
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4.5 Origin of soft terms

Let us now discuss in more detail the effects of the breaking of the local susy
(and the effective global susy when applicable) at energies well below MPlanck.
We neglect gravitational couplings, but keep those of O(m3/2), which can be
further neglected if this is justified. Actually, we want to stress the importance
of the additional terms – with respect to the global susy limit – and also to
show that they are closely related to the Kähler geommetry.

In a theory with broken gauge invariance, the effective lagrangian after the
symmetry breaking displays new interactions obtained by shifting the relevant
fields by the amounts of their vev’s. These new terms are called soft in the
sense that they do not worsen the renormalization properties of the theory. For
instance, in the Standard Electroweak Theory, the Higgs field H gets a vev that
produces a series of soft terms which give masses to the various particles without
spoiling the renormalizability:

Lsoft
SM =

(
〈H〉 ∂

∂H
+

1

2
〈H〉2 ∂2

∂H2

)
LSM (43)

= λt〈H〉t̄t+ ...+
1

2
g2
2

∣∣∣〈H〉
∣∣∣
2

W+µW−
µ

(44)

In a theory with global susy, the soft terms are obtained by a similar ex-
pansion in the auxiliary field vev’s 〈FA〉 and 〈Dα〉. The expansion stops at the
quadratic terms (linear for the superpotential) because of the development in
powers of the Grassmann variables θ, θ̄. Therefore the soft terms are:

Lsoft
global =

〈
FA
〉 ∂W
∂zA

+ h.c.+
〈
FA
〉 〈
F̄ Ā
〉
KAĀ + ...+ 〈Dα〉Dα (z, z̄) (45)

If the supersymmetric theory was renormalizable in the first place, the addition
of the soft terms preserve the renormalizability. Non-renormalizable (e.g. effec-
tive) Kähler metrics are needed to obtain a scalar mass through the second term
in the r.h.s. of (45). Indeed the first term in (45)can only give a mass splitting
between scalars and the corresponding fermions, a well-known feature that is
no good in the case of matter supermultiplets. It also introduce analytic scalar
interactions, the so-called A-terms. The last one, gives a D-type mass to the
scalars, which cannot be the whole story since the property that the generator
Tα associated to Dα is traceless by the anomaly condition implies that these
terms are both positive and negative. (We shall discuss later the possibility of
an “anomalous” U(1).)

In a sugra theory, the soft terms are just a bit more involved [14, 17]:

Lsoft
local =

〈
FA
〉
eK/2∇AW + h.c.+ 〈Dα〉Dα (z, z̄)

+
〈
FA
〉 〈
F̄ B̄
〉(1

3
KAB̄KCD̄ −RAB̄CD̄

)
z̄D̄zC (46)
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where the appropriate definition of the Dα (z, z̄) is given in (36).
The main differences with respect to (45) are in the geometric nature of the

couplings of the 〈FA〉 to the scalars. This “geometric transmission” is specially
clear for the second term which contains two terms: one proportional to the
total amount of F-type breaking, the same for all scalars (i.e.is universal, or
flavour independent), and another with the Riemann curvature that depends
on how the susy breaking directions are related to the different scalars by the
Kähler geometry.

But, as already noticed, there is also a difference in the generalized A-terms,
the first term in (46), because it is not an analytic scalar interaction.

4.6 Soft terms as remnants of hidden susy breaking

In order to get a better insight into the physical content of the soft terms (46),
let us consider a situation quite close to what one expects from a sugra theory as
the beyond-the-standard-theory candidate. We separate the chiral superfields
ΦA into:

(i) a hidden sector, za, which is related to the physics that one expects to
become relevant at very high energies, to provide solutions to problems like
susy breaking, flavour problems and grandunification;

(ii) a MSSM sector, Φi, holding the quarks, leptons, and Higgses, together with
their susy partners (of course, MSSM stands here for any “low energy” theory).

If one considers the effective theory at energies far below MPlanck, the hid-
den fields have been integrated out, and only appear as classical variables. For
the standard fields, we only retain the terms in the lagrangian which are of
dimension less or equal to four, to obtain an effective renormalizable theory.
Expanding the Kähler potential and keeping the relevant terms yields the effec-
tive one:

K = Ko

(
za, z̄ā,Λ

)
+Kij̄

(
zaz̄ā,Λ

)
φiφ̄j̄ ... (47)

where the metric for the MSSM fields depends on the hidden fields and on the
scales Λ that define the effective theory. A similar expansion is done for the
superpotential

W = Wo (za) + µij (za)φiφj + Yijk (za)φiφjφk + ... (48)

Then assume that susy is broken through some auxiliary fields in the chiral
hidden sector, F a and auxiliary fields in the hidden gauge sector (if any) Dα.
The soft terms are obtained by applying the previous formulae. However, since
we want to work directly with the canonical metrics, we renormalize the fields
by their vielbein:

φ̂i = ζi
kφ

k ˆ̄φi = ζ̄i
k̄φ

k̄ ζi
k ζ̄

i
l̄ = Kkl̄ (49)

From the quadratic term in (46) we obtain with this redefiniton to the physical,
flat metrics, the following expression for the scalar masses [17, 18]:

m̃2
ij̄ = m2

3/2δij̄ − R̂ab̄ij̄

〈
F aF̄ b̄

〉
(50)
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where,

R̂ab̄ij = Rab̄kl̄(ζ̄
−1)l̄

i(ζ
−1)k

j

m2
3/2 =

1

3
e−Ko |W |2 = Kab̄F̄

b̄F a (51)

The scalar masses get two contributions: an universal one whose origin is clearly
in supergravity, corrected by Kähler curvature terms which may carry some
‘flavour’ dependence. This shows the geometric interpretation of the flavour
pattern of scalar masses as reflecting the flavour dependence of the Kähler met-
ric. An interesting case are the so-called ‘no-scale’ models, where the curvature
terms exactly cancel the term m2

3/2 for all matter fields at the classical level.

From (46), concentrating on the cubic terms in the φi scalars, one gets,
before field renormalization, the coefficient of the trilinear soft term (analytic in
the φk):

AijkYijk = 〈F a〉 e−Ko/2(∂aYijk +KaYijk

−Γi′

aiYi′jk + Γj′

ajYij′k + Γk′

akYijk′) (52)

One can reabsorb the factor e−Ko/2 in the Yij′k to remain consistent with the
definition of the Yukawa couplings between fermions. There are three contribu-
tions to Aijk: one is univerasl and depends on ∂K . The first term is related to
the dependence of the Yukawa couplings on the fields that contribute to susy
breaking. The last contributions have a more geometric nautre.

In the simplified case of a diagonal effective metrics, Kij̄ = δij̄Zi(z
az̄ā,Λ),

these relations become:

m̃2
i = m2

3/2 −
〈
F aF̄ b̄

〉
∂a∂b̄ lnZi,

Aijk = 〈F a〉
(
∂a lnYijk +

1

2
Ka − ∂a lnZiZjZk

)
(53)

where the factor e−Ko/2 was included in the Yij′k. If one takes, as an example,
i → H2, j → Qj , k → Uk, one clearly see from either (52) or (53) that the
matrices AU and the Yukawa coupling matrix Y U do not commute in general.

5 Some Examples

5.1 Modular invariant Kähler geometry

The soft terms have been studied in models with different kinds of moduli and
modular dependence as possible phenomenological description of the low energy
string physics. Here we discuss the simplest case, as an example of modular
invariance [?] as a possible source of flavour asymmetry.

Take a single modulus field, T, as the hidden sector, and the MSSM scalars,
Φi. Under the modular group SL(2, Z) their tranformations are defined to be:

T → aT − ib

icT + d
; Φi → (icT + d)

ni Φi (ad− bc = 1) (54)
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The integers ni that define the tranformations of the Φi are the modular weights.
The following Kähler potential is modular invariant up to a Kähler tranforma-
tion,

K = 3 ln
(
T + T̄

)
+
(
T + T̄

)ni
ΦiΦı̄ (55)

It exhibits flavour dependence if the ni are different. Assume that susy is broken
with vanishing Λcosm. Define the contribution of FT to the susy breaking by the
angle Θ, such that:

1

3
FTFT = m2

3/2cos2Θ (56)

Then apply the formula in the previous sections to obtain for the scalar masses,

m̃2
i = m2

3/2

(
1 − 3ni cos2 Θ

)
(57)

and for the trilinear coupling coefficients,

Aijk = (ni + nj + nk)
√

3m3/2 cos Θ (58)

This example nicely shows that the universality condition is not necessarily more
attractive even from a theoretical point of view.

5.2 Gauge mediated supersymmetry breaking

The global susy limit is assumed to be valid in these models, which possess
a hidden sector with a gauge singlet X together with chiral multiplets, the
messengers, Q, Q̃ transforming in conjugated non-trivial representations of the
SM gauge group. The superpotential includes a term WM = XQQ̃, such that
if X takes a large vev , which we also assume, this gives a mass 〈X〉 to the
messengers that decouple from the low energy theory. As a final assumption,
the hidden sector is coupled to the MSSM chiral fields only by gauge interactions.

The MSSM matter has a Kähler potential which is taken to be flavour diag-
onal,

Kmssm = Zi(XX̄,Λ)φiφ̄ī (59)

where the metric Zi carries the wave function renormalization. It feels the X
field because 〈X〉 gives the decoupling threshold of the messengers. Indeed,
the dependence of Zi in the running coupling constants takes the well known
expression:

Zi(µ)

Zi(µ′)
=

(
g2(µ′)

g2(µ)

) 2Ci
b

(60)

where we have taken a simple group, since the result is easily generalized, Ci is
the Casimir eigenvalue of the field φi, and b is the coeffficient of the β-function
of g2,

g−2(µ) = g−2(µ′) +
b

16π2
ln
µ2

µ′2
(61)
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Since the messengers decouple at the scale
√
XX̄, there is a decrease in the

running (61) above this scale, b → (b − bQ). Therefore starting with Zi(Λ) at
some scale (e.g., the unification scale of the fundamental theory) and going down

to the the scale µ, the regimen changes at
√
XX̄ and one has,

Zi(µ)

Zi(Λ)
=

(
g2(Λ)

g2(
√
XX̄)

) 2Ci
b−bQ

(
g2(

√
XX̄)

g2(µ)

) 2Ci
b

(62)

which shows the dependence on ln
√
XX̄ (notice that g2(µ) also depends on

ln
√
XX̄). Now by applying (53),

m̃2
i = m2

3/2 −
|FX |2
|X|2

(
∂2 lnZi(XX̄)

∂ lnX∂ ln X̄

)
, (63)

where m2
3/2 can be neglected since it is assumed to be small with respect to

|FX |2/|X|2, it is straightforward to get the well-known result,

m̃2
i (
√
XX̄) =

2Cig
4

(16π2)2
bQ

|FX |2

|X|2
(64)

by considering the limit µ2 → XX̄, or the correctly renormalized value of (64)
at lower scales [20]. It is important to note that (64) is a 2-loop result,but here
it follows from the one-loop wave function renormalization. The method has
been also used for higher loop results.

This example illustrates how the Kähler metric encodes the RGE evolution
of the theory.

5.3 Decoupling of a flavour theory

If a flavour theory is introduced at some scale MF to solve the fermion flavour
problems, the sfermion masses can get a flavour dependence because the flavour
symmetry breaking fields tend also to develop some induced supersymmet-
ric breaking through their auxiliary F -components, and to transmit it to the
sfermions of the theory. For illustration, consider a Froggatt-Nielsen type flavour
model [21], by making the set of assumptions: (i) a U(1) symmetry with charge
Qi associated to each Φi; (ii) a field φ with charge Q = −1 with 〈φ〉 6= 0 that
breaks the flavour U(1) symmetry.

The trilinear Yukawa couplings, Yijk is forbidden unless Qi +Qj +Qk = 0.
But in an effective theory at the scale MF (which could be MPlanck or lower) non
renormalizable interactions with powers of φ/MF are present or are generated
by integrating out some heavy fields. Therefore the forbidden Yukawas are
replaced by a field dependent one,

Yijk ∝
(

φ

MF

)Qi+Qj+Qk

(65)
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so compensating the U(1) charge imbalance. In this way, it is possible to gen-
erate hierachies in the Yukawa coupling and, therefore, of fermion masses and
mixings, through the powers of a relatively small number, 〈φ〉/MF , in the effec-
tive Yukawa couplings.

The Kähler metric of the Φi will depend on φ at the fundamental level or
as an effective metric. Let us assume that supersymmetry is broken, producing
a gravitino mass m2

3/2, but with family independent or universal susy breaking
in the MSSM sector.

Defining φ such that its metric becomes canonical, one has for the corre-
sponding auxilairy field,

〈Fφ〉 =

〈
∂W

∂φ

〉
−m3/2〈φ̄〉 (66)

One expects, and we shall check it in an example, that 〈Fφ〉 ∼ O(m3/2〈φ̄〉),
corresponding to an induced susy breaking along the φ direction [22, 23]. This
can be avoided only by an ad hoc choice of the superpotential, not necessarily
consistent with the flavour theory.

The effective superpotential and the effective metrics of the Φi depend on φ
from the integration on heavy states and loop effects as well. This will be made
more explicit in the example below, but (65) shows the dependence expected in
the superpotential. By applying the formulae displayed in the previous section,
one sees that the corresponding A-terms will have a contribution proportional to

m3/2 and to the same power of 〈φ〉
MF

as the corresponding Yijk. The φ dependence

of the Kähler metric introduce a flavour dependence in the scalar masses, m̃2
ij̄
.

Moreover, if the U(1) is gauged, the scalars get D-type masses proportional to
their charges (more below).

Therefore, one generically expects a non-trivial flavour structure of the soft
terms of O(m3/2) from the hidden sector associated to a flavour theory. In the
attractive class of the models that now go by the name of ‘gravity mediated’,
the susy breaking are of O(m3/2) and the flavour theory effects are expected to
affect any kind of universality of the primordial susy breaking. On the contrary,
in the now called ‘gauge mediated’ models, where the susy breaking splitting
between the MSSM fermios and sfermions is much larger than O(m3/2) one
expects to be safe if MF is large enough to decouple the flavour theory before
susy breaking.

Nonetheless, a rich flavour pattern in the soft terms would provide us with
very constraining conditions on the flavour theory that could usefully comple-
ment the fermion mass hierarchy puzzle.
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6 An Example with Anomalous U(1) and In-
verse Hierarchy

6.1 The Froggatt-Nielsen paradigm

The smallness of the fermion mass ratios and mixing angles faces us with a
problem of naturalness. The direction initiated by Froggatt and Nielsen [21] to
understand such a hierarchical pattern goes as follows:

(i) The key assumption is a gauged horizontal U(1)X symmetry violated by the
small quark masses so that small Yukawa couplings are protected (forbidden)
by this symmetry. Gauging the symmetry avoids massless Goldstone bosons
when the symmetry is broken. The effective U(1)X symmetric theory below
some scale MF is supposed to be natural to the extent that all parameters are of
O(1). The scale MF is the limit of validity of the effective theory. The X-charges
of quarks, leptons and Higgses are free parameters to be fixed a posteriori and
simply denoted qi,ui, di,`i, ei,h1,h2, for the different flavours, where i = 1, 2, 3
is the family index.

(ii) One (or more) Froggatt-Nielsen field φ, a SM gauge singlet is introduced,
and the U(1)X normalized so that Xφ = −1. The effective (non-renormalizable)
U(1)X allowed couplings are of the form gU

ij(φ/MF )qi+uj+h2QiU jH2, with anal-
ogous expressions for the H1 couplings to down quarks and leptons. The coeffi-
cients gU

ij , etc, are taken to be natural, i.e., of O(1), unless they are required to
vanish by the U(1)X symmetry.

(iii) The small parameter λ is identified with the ratio (< φ > /MF ) as the
U(1)X symmetry is broken by the Phi vev. Below the scale < φ >= λMF , one
recovers the SM with the effective Yukawa coupling matrices given by

Y U
ij = λ|qi+uj+h2| Y D

ij = λ|qi+dj+h1| Y E
ij = λ|`i+ej+h1| (67)

The Yukawa matrix entries corresponding to negative total charge should vanish
but these zeroes are filled by the diagonalization of the λ -dependent metrics.

The X-charges are now chosen to fit the hierarchy in the mass eigenvalues and
mixing angles. The experimental masses (at O(MPlanck)) of the third families
give: h2 + q3 +u3 = 0 and x = h1 + q3 + d3 = h1 + `3 + e3, where the parameter
λx = mb tanβ/mt. With this restriction the Yukawa couplings depend only on
the charge differences qi − q3, ui − u3,..., ei − e3 and x.

An important question was first investigated in ref. [15] in the Froggatt-
Nielsen framework. Just like the Yukawa couplings, the soft susy breaking
terms contain powers of the φ -field to implement the U(1)X symmetry. The
scalar mass matrices have a corresponding hierarchy among their elements, so
that (m̃2)ij̄ ∝ λ|Xi−Xj |. Even in the flavour basis that diagonalizes quark mass
matrices, the squark mass matrices will be non-diagonal. One solution [15] is to
add another abelian symmetry and a smaller scale. In this case it is possible to
strongly suppress (m̃2

D)12. More precisely, the charge pairs are chosen to align
the squark masses to the down-quark ones. Interestingly enough, the model pre-
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dicts large (m̃2
U )12 leading to sizeable DD̄ mixing that could be experimentally

tested, as already pointed out here above.

6.2 A few questions and possible answers

The attractive idea of Froggatt and Nielsen raises some relevant questions, we
would like now to argue that they all find satisfactory answers in the supergrav-
ity framework:

(A) What fixes the scale MF of the effective theory possessing the horizontal
symmetry? The obvious solution is to identify MF to the highest physical scale,
the Planck mass, MPlanck. A supergravity theory is non-renormalizable as it
contains powers of the Newton constant, the inverse of MPlanck, an is supposed
to arise from a theory of quantum gravity.

(B) What gives rise to the ”small number” λ? An appealing suggestion is
to relate it to the coefficient that appears in the Green-Schwarz mechanism, as
folows. In general the horizontal U(1)X potentially has (triangle) anomalies with
the other gauge symmetries, including the SM gauge group. Models exist where
all these anomalies vanish. However, the more promising models [24] rely upon
the Green-Schwarz mechanism: the shift of a scalar, an axion, under the U(1)X

gauge transformations can cancel all the anomalies if and only if their coefficients
obey an appropriate proportionality factor. Now, it can be shown that this
requires a Fayet-Iliopoulos term, with a coefficient ξ2 = M2

PlancktrX/6(16π)2.
The minimization of the scalar potential then fixes φ2 = ξ2. With MF =
MPlanck, this defines the number λ =

√
6trX/48π, which can be small enough

for reasonable values of trX (see below).

(C)How can such flavour theories be experimentally tested? Indeed, the charges
are ‘fitted’ to reproduce the masses and mixings (with some predicted relations)
up to some coefficients of O(1), and one needs some predictions that can be
experimentally measured. If one applies the general supergravity fromalism,
rather than general considerations of U(1)X invariance, one gets more strict
constraints on the soft terms, which are related to the fermion mass hierarchy.
A striking consequence is an inverse hierarchy pattern for the sfermion masses.

In the rest of these notes, we first discuss point (B) above and then apply
the general results to a special model to illustrate (C).

6.3 The Green-Schwarz mechanism

The introduction of the U(1)X gauge symmetry besides the SM gauge symmetry
brings us to the fundamental question of gauge anomalies. Indeed, by a gauge
transformation Xµ → Xµ + ∂µε (x) , the lagrangian transforms as:

δ

∫
FAµνFA

µν =
AA

8π2

∫
εF̃AµνFA

µν (68)

where AA = trXT 2
A, with A = 3, 2, 1,X, associated to the generators of each

factor in the overall gauge group SU(3)⊗SU(2)⊗U(1)⊗U(1)X , If the coefficients
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AA do not vanish, the theory have anomalies that spoil the gauge invariance.
It was found in string theories [25] that a chiral multiplet with a dilaton-axion
complex scalar S allows for a cancellation of these anomalies. The gauge term
in the supersymmetric lagrangian becomes,

∫
d2θ

S

4kA
WAαWA

α + h.c. =
ReS

4kA
FA

µνF
Aµν + i

ImS

4kA
F̃A

µνF
Aµν

+
FS

4S
λαλα + h.c. . . . (69)

so that the gauge couplings are given by the vev of the real part of S, the dilaton,
and the Kac-Moody levels kA, namely,

kAg
2
A = g2 = (ReS)−1 , ∀A = 3, 2, 1,X. (70)

The other terms in (69) express the gaugino masses in terms of the vev’s of FS .
If the anomalies are in a well defined relation,

AA

kA
=

trX

24
, ∀A = 3, 2, 1,X. (71)

it is possible to compensate for the anomalies. The r.h.s. in (71) is the coefficient
of the gravitational anomaly, which has also to vanish, as it does, e.g., for the
hypercharge, Y. All the anomalies can be compensated if S also transforms
under U(1)X , by a shift of its imaginary part, the axion,

S → S +
i

2
δGSε (x) δGS =

trX

192π2
(72)

This important property allows the abelian charge X to be conserved. In more
recent investigations of string theories, it has been noticed that multi-dilaton
theories are allowed, with the possibility of cancelling different anomalies with
their different axion partners.

Since S is now transforming under U(1)X , it will also appear in the corre-
sponding D−term, according to (36), as is fixed by the supergravity theory. The
Kähler potential for the dialton is K(S, S̄) = − ln(S + S̄) leading to the final
form of theDX auxiliary field for the anomalous U(1)X , with the Green-Schwarz
mechanism:

iKSδS =
δGS

2(S + S̄)
=
g2

4
δGS ≡ ξ2

MPlanck

DX = gX

(
min(Xi,Xj)KiΦ

j −Kφφ+ ξ2
)

→ gX

(
Xi

∣∣Φi
∣∣2 − |φ|2 + ξ2

)
(73)

In (73 ) we have included (without further notations) the form obtained with
the canonical metric, and we have put the M2

Planck factor to explicitly account
for the units. This result was first found by a string calculation [26].
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The output theory has a Fayet-Iliopoulous term for the U(1)X that for rea-
sonable values of trX is about one order of magnitude below MPlanck. This
suggest to try to relate it to the small parameter that is needed in flavour the-
ories, in particular in the Froggatt-Nielsen one, to explain the fermion mass
hierarchy.

6.4 Inverse hierarchy model

Models with inverse hierarchies, in which the sfermions of the first two fami-
lies are significantly heavier than those of the third one, have been discussed
in several contexts. Models with an anomalous U(1)X naturally lead to this
phenomenologically interesting situation. In particular, as already discussed,
this could be useful to suppress FCNC effects.

The model presented here below is a very simplified one. It is a special case
of a model that includes modular fields, allowing for a slightly more general
spectrum [22]. Other approaches combine simple models of dynamical susy
breaking [23].

Let us assume:

(i) The Froggatt Nielsen flavour theory, with an anomalous U(1)X as the flavour
symmetry, as discussed above, with the charges fixed by a fit to the fermion
masses and the anomaly condition (71). The scale MF = MPlanck and only
one field φ is introduced, just like here above. There are several choices for the
charges that are suitable, depending also on the agreement with the fermion
spectrum that is required. We shall not be very concerned by this aspect of the
problem here.

(ii) The dilaton multiplet S compensates for the anomalies and fixes the coupling
constants. This is a very strong assumption since we do not know how to obtain
a dilaton vev in these theories. This is a good reason to assume it without more
discussion. Then the results just derived apply, including (73).

(iii) Susy is primarily broken only by the auxiliary field FS of S, with Λcosm = 0,
so that 〈FS/2S〉 =

√
3m3/2. This is unrealistic, but the model is not realistic

either! It yields a gaugino mass M1/2 =
√

3m3/2.

(iv) The theory is natural so that the Yukawa couplings have the hierarchical
structure (67). The Kähler potential of the matter fields has a dependence
on φ dictated by the naturalness and the U(1)X invariance. In particular the
non-diagonal entries in the metrics are of the form,

Kij̄ = zij̄λ
|Xi−Xj | (74)

where the zij̄ are numbers of O(1) in a natural theory. Of course, there is no
term in the potential containing only φ.

The coupling of S to matter is taken to be only through supergravity in this
simple approach. Therefore the susy breaking by FS only produces a universal
mass and a univesal A-term for the scalar fields Φi as well as for φ. Therefore,
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omitting the other fields, the scalar potential for φ is

V (φ) = m2
3/2 |φ|

2
+

1

2
g2

X

(
ξ2 − |φ|2

)2

(75)

where the last term is the D-term with the Fayet-Iliopoulos term ξ. Since ξ �
m3/2, the minimization gives,

ξ2 ≈ |φ|2 〈DX〉 ≈ g−1
X m2

3/2 (76)

The first equation gives the scale of the U(1)X breaking, which is ξ, and defines
the ‘small number’ λ = ξ/MPlanck =

√
trX/16

√
6π. The second one displays the

induced DX breaking. It can be checked that this is the only minimum by a
detailed study of the flat directions with the general method already discussed.
At the minimum of the potential,

Fφ = m3/2φ = λm3/2MPlanck (77)

which is the induced susy breaking along the φ direction.
Finally, the computation of the soft terms yields relatively simple results

(since this is a simplified model),

m̃2
ij̄ = m2

3/2

(
1 +Xiδij̄ −

1

2
|Xi −Xj |λ|Xi−Xj |zij̄

)

AU
ij =

(
−M1/2 + (h2 + qi + ui)m3/2

)
δij

−
(

1

2
|qi − qj |λ|qi−qj |zQ

ij̄
+

1

2
|ui − uj |λ|ui−uj |zU

ij̄

)
m3/2 (78)

together with similar results for AD and AE .
The first (universal) term in these equations correspond to the FS susy

breaking, with M1/2 =
√

3m3/2, in the case of this model. The second term in
m̃2

ij̄
is the contribution to the scalar masses from the DX susy breaking, propor-

tional to the U(1)X charges. The other contributions come from the induced
Fφ susy breaking. It is worth noticing that most of this form is preserved in
more general models.

For the third family one finds , from h2 + q3 +u3 = 0 and x = h1 + q3 +d3 =
h1 + `3 + e3,

At = −M1/2 Ab = Aτ = −M1/2 + xm3/2 (79)

for the diagonal A terms in the usual notation, and for the scalar (mass)2 one
obtains the relations,

m̃2
Q3

+ m̃2
U3

+ m̃H2
= M2

1/2

m̃2
Q3

+ m̃2
D3

+ m̃H1
= M2

1/2 + xm2
3/2

m̃2
L3

+ m̃2
E3

+ m̃H1
= M2

1/2 + xm2
3/2 (80)
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The most interesting results are for the differences between the diagonal
terms,

m̃2
i − m̃2

j = (Xi −Xj)m
2
3/2 Aii −Ajj = (Xi −Xj)m3/2 (81)

Remarkably enough, these results remain more general, and are also found in
models where the Kähler metric has flavour dependent modular invariances.

Therefore the spectrum is completely fixed by the charges. Notice that in
many models of the Froggat-Nielsen type the following combinations are fixed:

λqi+ui−qj−uj ≈
(
mui

/muj

)

λqi+di−qj−dj ≈
(
mdi

/mdj

)

λ`i+ei−`j−ej ≈
(
mei

/mej

)
(82)

This displays the inverse hierarchy pattern for the scalars with respect to the
fermions: light fermions are associated to large positive U(1)X charges, therefore
their scalars are heavier, as expressed by (81), in units of m2

3/2. Namely, with

the value of the Cabibbo angle for λ, [22]

1

2

∑

L,R

(m̃2
i − m̃2

j ) ≈
1

3
m2

3/2 ln (mi/mj). (83)

Finally, let us study the FCNC problems in the context of this model and its
generalizations.With only one φ -field , the acceptable U(1)X charge assignments
yield much too large FCNC effects in K-physics, see (21). However there is still
enough freedom to choose, e.g.,d1 = d2 and e1 = e2, to suppress the most
dangerous processes. Notice that this is not only due to the U(1)X symmetry:
for matrix elements in a sector of degenerate charges the abelian symmetry
gives no restriction, implying a generic non diagonal matrix by the naturalness
principle. Instead, by a more detailed calculation one gets a diagonal degenerate
matrix [22].

In the stringest case of ∆mK , the relevant factor is

(δD
L )12(δ

D
R )12 ≈ (d1 − d2)(q1 − q2)

(d1 + d2 + γ)(q1 + q2 + γ)

md

ms
(84)

where γ, relatively large in this models ( ≈ 20 in this simple model) accounts
for the renormalization to low energy of the masses (the mass differences remain
fixed). Now by putting d1 = d2, (84 ) vanishes, leaving only the contribution
due to (δD

L )12 ≈ 2md/(2 + γ)ms, which is consistent with the present limits.
Therefore, the model, with this assignment avoids the FCNC problem by

combining the three ingredients:

(a) alignment: the off diagonal matrix elements are suppressed by relatively
high powers of λ, but they vanish for equal charges;

(b) degeneracy: degenerate charges lead to degenerate scalars, even if this can
only be applied to a few charges;
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(c) decoupling: the inverse hierarchy implies that the scalars associated to light
fermions, which contribute mostly to the dangerous processes (∆mK , e.d.m. of
the neutron and the electron) are heavier, providing an additional suppression
factor.

Of course, the whole approach has many arbitrarinesses and some choices
are obviously ad hoc . But this discussion leads us to the conclusion that the
sfermion spectrum could have a rich flavour pattern, give important hints on the
flavour puzzles and still be consistent with FCNC – and CP violation – effects.
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C.: Nucl. Phys.B233 (1984) 511.

[6] Dimopoulos, S.; Georgi, H.: Nucl. Phys.B150 (1981) 193. Sakai, N.: Z.
Phys. C 11 (1981) 153.

[7] Donoghue, J.; Nilles, H.-P., Wyler, D.: Phys. Lett. 128B (1983) 215. Bou-
quet, A.; Kaplan, J.; Savoy, C.A.: Phys. Lett. 148B (1984) 69.

[8] Dreiner, H.P.: hep-ph/9707436. Barbier, R. et al.: hep-ph/9810232.

[9] Banks, T.; Grossman, Y.; Nardi, E.; Nir, Y.: Phys. Rev. D52 (1995) 5319.
Binétruy, P.; Dudas, E.; Lavignac, S.; Savoy, C.A.: Phys. Lett. B (1) .

[10] Frère, J.-M.; Jones, D.R.T.; Raby, S.: Nucl. Phys.B222 (1983) 11. Nilles,
H.-P.; Srednicki, M.; Wyler, D.: Phys. Lett. 120B (1983) 346. Derendinger,
J-P.; Savoy, C.A.: Nucl. Phys. B237 (1984) 307. Casas, J.A.; Lleyda
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